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I. INTRODUCTION

Ion beams have attracted considerable interest in recent years as a result

of their potential application as drivers for inertial confinement fusion.
Due to the state-of-the-art of accelerator technology, however, theoretical
advances in beam propagation have focused on the properties of high-energy
(high-gamma) electron beams. Some important simplifying assumptions are

made for highly relativistic beams which do not apply at low-gamma. In past
studies (Refs. 1 and 2), we be§;;~23‘rei§§ these model assumptions to address
the axi-symmetric evolution of jon beams. In this SAd—F4mad report on the
propagation of low-gamma ion beams, we explore the resistive hose instability
with longitudinal velocity-spread.

I

o

° For energies of interest, the theoretical models of electron beam propagation

cannot be directly applied to ions because of their low relativistic gamma LS

(y) factors. For example, for kinetic energy equal to 50 MeV,”y =~ 99. for
electrons compared to;y = 1.05 for protons. If the beam propagates in the
C}*"** © . longitudinal direction'(a1ong the z-axis), the effective inertial mass
< e ‘-~~mf‘;§f the beam particles in the z-direction is given approximately by;y%; where
m is the particle rest mass. Thig suggests that light ions are conéiderab]y
more susceptible to longitudinal acceleration than electrons of equivalent
kinetic energy; the longitudinal particle-motion cannot be ignored as in
the electron case. This adds a new dimension to ion beam propagation\

}
;

AN
* The counsequences of the longitudinal motion on beam stability can be divided
into three categories:

“> (1) Longitudinal spreading of the beam pulse due to longitudinal
velocity-spread (longitudinal temperature);

. (2) Longitudinal mass (bunching) instability; and

(3) Resistive hose instability with longitudinal velocity-
spread.
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Categories (1) and (2) are unique to light-ion propagation, while (3) requires
modification to existing electron-beam hose stability theory.

In order to address issue (1) above, we developed the low-y propagation code
LOGAP (Ref. 1) which models the axi-symmetric (monopole) evolution of a

single pulse (with longitudinal and transverse degrees of freedom). LOGAP
consists of four basic components: electromagnetic field algorithm GEM, which
generates both longitudinal and radial field profiles in real-time; the
highly-developed, chemistry package BMCOND, which generates the conductivity
profiles in the ambient gas resulting from the passage of the beam (Ref. 3);
the HIGAP algorithm for solving the radial-envelope equation of motion

(Ref. 3 and 4); and the longitudinal dispersion algorithm LNGDSP which
describes the longitudinal flow of beam particles via a fluid model. A
detailed discussion of LOGAP is found in References 1 and 2; for completeress,
however, we provide in Appendix A excerpts from Reference 1 describing both
GEM and LNGDSP. A stability analysis of the GEM field algorithm is given in
Reference 2 and is reproduced here in Appendix B.

Longitudinal spreading of the beam pulse is a concern since it could transform
a given pulse into a longer one with lower current which would then be less
hose-stable. It has been suggested (Ref. 5) that the spreading might be
contained by the self-induced longitudinal electric field at the front and
rear of the pulse, keeping the beam particies trapped inside. Preliminary
results from LOGAP to date have failed to verify the existence of this self-
trapped mode.

It should be emphasized that in LOGAP longitudinal and transverse degrees

of freedom are essentially decoupled. If we partition the beam particles into
subgroups according to their vz-velocity, then LOGAP assumes that the
current-density of all subsets, regardless of Vo have the same radial
profile. A more realistic approach would be to allow the different subsets

to expand radially at different rates; the low-velocity subgroups would

expand faster since their particle radial-motion is confined by a relatively

v AR RN N ISP A h O 1




weaker magnetic pinch force. The very low velocity particles (which in LOGAP
contribute to the lorngitudinal spreading of the pulse tail) may "evaporate"
in the radial direction. Therefore, LOGAP should be appropriately modified
to account for transverse evaporation for a definitive test of the self-
trapped pulse mode.

The Tongitudinal bunching instability has been examined by Sloan et. al.
(Ref. 6) and is found to be Landau damped when the longitudinal rms velocity
spread is greater than some minimum value [see Eq. (104) below]. For a

\50 MeV, 10 ka) proton beam, this minimum vales is ~.075 Vo> where Vo is

the mean velocity of beam particles. This should be well satisfied at the
exit-port of an Auto-Resonant Accelerator (ARA), for example [see Eq. (101)
below); if not, the bunching instability itself and/or the self-induced
electric field will probably ensure that the rms velocity-spread within the
pulse is more than enough to stabilize it.

In the remainder of this rep..:, we examine the effects of longitudinal
velocity-spread on the resistive hose instability. The rigid beam model
and the multi-disk, distributed-mass model of Lee (Ref. 7) are both
modified to account for the phase-mixing associated with the

distribution of longitudinal velocities. Beam particles are partitioned
into subgroupc according to their vz-velocity with each subset experiencing
an independent transverse displacement. The resulting equations of motion
are solved for mode growth in the context of an initial-value problem with
finite pulse length. Upper-bounds in hose-mode growth are found via saddle-
point analysis as well as conditions for "absolute" hose stability.

The results of this preliminary study suggest that the light-ion, low-y
beam may have a hose stability advartage over a comparable electron beam.
For example, the (50 MeV, 10 ka) proton beam with longitudinal rms velocity-
spread of ~.1 Vo has an estimated hose-stable pulse length that is nearly
twice the zero-spread model prediction. With an rms spread of .26 Vo it
apgroaches an "absolute" hose-stable regime; but, if the pulse spreads
longitudinally (i.e., no self-trapping), the beam current decreases until
hose-growth recovers.
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The analysis in this report is semi~quantitative in that it is based on a
single-mode approach with various simplifying assumptions: the conductivity
channel is assumed fixed in space independent of beam evolution; the plasma
return currents have a prescribed radial-profile; and the longitudinal and
transverse equations of motion are decoupled. In a comprehensive treatment,
these assumptions should be relaxed and the equations of motion solved
numerically.

In Section II, the basic particle and electromagnetic field equations are
presented. The equilibrium state is described in Section III with emphasis
on the isothermal Bennett distribution and the longitudinal velocity distri-
bution. Hose-like perturbations are considered in Section IV; the rigid-
beam dispersion equation with longitudinal velocity-spread is derived in
Section iV.A.; and the modified distributed-mass model and the single-mode
dispersion equation is derived in Section IV.B. The dispersion equations

are analyzed in Sections V.A. and V.B., respectively. And in Section VI,
we interpret the results in the context of the ARA and longitudinal mass
instability.




I1. PARTICLE AND FIELD EQUATIONS

We consider a beam of ions with mass m and charge Zbe propagating with a
mean velocity Yo in the positive z-direction through an ionized gas. The

ambient gas-plasma is characterized in the present study by a real, scalar
conductivity o which is assumed to be known and independent of beam pertur-

’
bations. In practice, the g-channel could be strongly affected by the
passage of the beam through the gas via direct collisional ionization and
. electromagnetic field breakdown, but these effects are neglected here.
{
|
The beam current Ib is assumed to be small compared to the Alfvén current
(IA):
) Ty << Tp = Yo, dmc” Yobolm-) 7 (17 ka) (1)
eZbR0 o~o\m, Zb
where Yo © (1 - 6(2))'1/2 is the relativistic factor for the mean velocity
Vo = ByCs> Mg is the electron ...ss and R0 is the resistance of free space
’ (R0 = 376.73 ohm). Thus, the paraxial approximation is adopted, i.e.,
[Pyl << Py = vV, (2)
! where |pl| refers to the amplitude of the single-particle transverse

momentum.

We also assume that o is large enough that charge-neutralization time is
small compared to the magnetic decay time, and hence, the displacement

current can be neglected. Together with the paraxial assumption (2),
this allows a reduction of Ampere's law to the form

"y 2 R o dA

. it R
| YAz - e 3t T e (3)

¥ where the electromagnetic fields are adequately described by the Tlongitudinal
component of the magnetic potential A:




ﬁ.l. = V_L X (AZ éZ) (4)
’
R, 2A
_ 0 z
E, =<t (%)

The transverse components {x,y) are denoted by the symbol (), and Jbz is
’ the beam current-density in the z-direction.

A particular beam particle with velocity v = (Vi,vz) satisfies the equations

of motion
'
dpZ . eZbR0 aAZ . (T (6)
dt c at 1l 17z
dB eZ R
'
Lo boy Fop (7)
dt c z 17z
By the paraxial assumption (2), we ignore the variations in P, and assume
) that v, and the relativistic factors y = [1 - (vs/cz)- (vi/cz)]l/2 are
constant for each particie orbit, i.e.,
dp
d
et = b () =0 ®
'
The mean particle momentum is expressed by
. <p,> £ P, = Y MV, (9)
where the bracket < > denotes the instantaneous average over all beam
particles in a disk at (z,t). However, it is also assumed that Po be
independent of (z,t) over the time scales of interest. The energy of a
'

particle with v, =V is given by

_ 2
Eo = Yomc (10)




It is convenient to express the particle energy and momentum in terms of
the momentum variable q and velocity spread v where

= Ymv, - Y MV, (11)

<
Y]
<
|
<

(12)

with q << Py By (8), both q and v are considered constants of motion. To
order q2Ay§m2c2), we have
2

P.Q 2 p

yne? el ¢ 20 s 13)
Yo 2y0m "o

B_L = Yomvl (14)

Expanding (11) about Voo it is easily shown that
2.3
q =y m | (15)
It follows that approximation (8) is valid so long as
vy | v

0
<« =2 (16)
3 Y
0 0

Y

Hence, the transverse single particle equation of motion (7) can be
approximated to lowest order by

2
d°r el R
1l _ "bo >
dtl B Y e Yo VL A, (17)

Note that the r.h.s. of Eq. (17) is independent of v. This allows us to
treat particles with different v, by the same pinch-potential. In sub-
sequent sections, beam particles are divided into subgroups according to
their longitudinal v, velocity. Eq. (17) implies that all subsets, regard-
less of Vys have the same equilibrium radial-profile.
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For closure, we necd the distribution function f(?,z, Vl, vz,t)d3r d3v which

14 represents the number of becam ions in the phase-space volume d‘ﬁl dz d2YL dvz.
The beam current density is then defined by

_ 2 f i}
Jy, = ely fd Vi dvZ v, £ =elvn (18)

where n is the beam-particle density. From continuity and Egs. (7) and (8),

f satisfies the Vlasov equation

eZ,R v

bo'z -
= ﬁlAZ-iiplf = 0 (19)

f aof
‘ at

+ Vl-iﬂf + V57 +

It is useful to introduce the variable £ defined by
g3Vt -2 (20)

and replace the independent variables (z,t) by (£,z) in all the relevant
equations. The derivatives transform as follows:

9 .98 _ 9
) 2z > oz 9t (21a)
‘ L, A
! ot 7 Vo ot (21b)
d _ 3 9. d _ 9. _ e
gf: dt = 5t oYy oz " Vo dz 7 V2 9z Vg (21c)
:‘ Employing (20) and (21) in Eqs. (3), (17), and (19}, we arrive at our final
: set of model equations (dropping subscript z from now on)
R ov
2 0”0 dA _
i Vi A- T (22)
2 eZ, R
d~ » _ “"bo
" r Yonev. VA (23)




f-
=~ A - 4
I, = ez, gavy jdv v f (24)

eZ,R v
v, %j- R —QE‘PJ-le-vplf = 0 (25)

These are employed in the following sections to treat the resistive hose
instability. We begin by explorinag the axi-symmetric equilibrium state.

e raR R R e o e




ITI. EQUILIBRIUM

Our equilibrium beam is assumed to be cylindrically symmetric about the
z-axis. Adopting cylindrical coordinates (r,8,z), the single particle
equation (23) becomes

2~
ar- —kg 7 (26)
dz
kK2 (r) = - “piofo 1 Mo (27)
B Y mv2 r dr
[0 N ¢]

where k, is the betatron frequency and AO refers to the equilibrium potential
which by (22) and (24) satisfies

dA R ov_ A
1d o 0070, (-
rar " @ T e T 3F (1 - 45) Jpg (28)
J, = el ﬁzv ﬁv v f (29)
bo b 1 )

In (28) we have assumed that the plasma return current-density is represented
by -5m Jbo » where the current neutralization factor 5m is assumed to be a
constant. This is a reasonable approximation when fy < 05 - For 4. >.5,
since the return current density has a radial profile considerably different
from Jy the r.h.s. of (28) is not valid.

Since the equilibrium distribution function fo is an integral of motion,
it can be written as a function of the constants of motion. We choose
the separable form

fo = Gl(w) F(v) (30)
2eZ,R B
where W = yf - ——-9—%—9 Ao (31)
yomvo

is a constant of motion according to Eq. (26) and the velocity spread v
is assumed constant by our model assumption (8). G and F are normalized




such that

n(r) = fib 6, (32)

1 =_/:1v F (33)

where "o is the equilibrium particle density.

For the Maxwellian distribution, G and F take the form

f 2
.0 -(w/u])
Gy = “UE e 1 (34)
2,, 2
Fy = ——~—/2_{ e~ (v/2u7) (35)
mu

where the mean-square velocities are defined by

ui <vf> (36)

(EEIPNN (37)

18]

u

The normalization constraints (32) and (33) are appropriately satisfied.
The transverse distribution GM is the important isothermal case described
by Bennett (Ref. 8 ). It has been shown by Lee et. al. (Refs. 4 and 9 )
that the Bennett distribution is a good approximation to the pinch-
equilibrium state.

It can be readily verified that the Bennett profile

5 =g, = ob 1 (38)
bo B naz (1 - r2/a2)2
and the magnetic potential
(1-4)1
A=A =-— D on (14 p2/50) (39)

0 B 47
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satisfy Eqs. (28), (29), (31), and (34), with

Ib = eZb A_v waz (40)

Taking the virial moment of (26), the mean-square transverse velocity
satisfies the equilibrium condition

2 2

up V> 2 2 Iy

:/—2“' = v2 = <k8 r> = (1 - 6m) TX (41)
0 0

with the Alfvén current IA defined by (1). This velocity-spread is due
entirely to betatron oscillations -- energy-spread effects are neglected.

For later reference, we express the longitudinal mean-square velocity
spread u2 in terms of the energy spread /E = (y - Yo)mcz. From Eqs. (13)
through (15), we derive the relation

.UE - <\)2> 5 1 <(/\E12> (42)
v2 - v2 b ( 2 1)2 E2
0 0 YO 0
_ 2
Eo =y me (43)

Note that if we attribute the lTongitudinal velocity-spread to betatrcn
motion only ~-i.e., ignoring energy-spread--then

HE oy (1-4.) 12 (4)
V2 el In
o /betatron Yo'o Y

which places a lower bound on the longitudinal temperature.

As a consequence of ignoring the v-dependence in kB(r), Eq. (27), the radial
profile of the equilibrium current is independent of the particular subset
of beam particles with the same v. This is expressed explicitly by intro-

ducing the partial current-density Jbo(r,v) for the subset of particles




with longitudinal velocity v = Vo t Ve i.e.,
Jbo(r,v) = F(v) Jbo(r) (45)

Jpo(r) = fav 3yo(rv) (46)

In subsequent sections, we shall treat each subset of particles separately
in order to account for the longitudinal velocity effects on hose.




IvV. HOSE DISPERSION EQUATIONS

Hose instability is treated by considering small amplitude perturbations of

the form
80y = 9y - dy =9y e’ (472)
83y () = Jp(v) = Iy (v) = I (v) €' (47b) }
A=A-A =hA el (47¢)
6f = f - f =f e (47d) |

where the zero subscript refers to the axi-symmetric equilibrium state
discussed in the last section. Jh(r,f,z,v)dv represents the partial current-
density of beam particles with longitudinal velocity between (vo + v) and

(vo + v + dv). The perturbed amplitudes (Jbl’.Al’ fl) are assumed to be

small. Note that the azimuthal dependence e in (47) is selected

specifically for the hose mode.

In this present study, we consider the longitudinal velocity-spread effects
in the contexts of two models: the rigid-beam and field model; and the multi-
disk distributed-mass model of Reference 7.




IV.A. Rigid-Beam and Field Model

Following the rigid-beam development of Reference 7 , we represent the

perturbed, partial current-density J, . to lowesl order by

bl

~ A dJ
- __bo
An equation of motion for the transverse displacement amplitude X can be
derived by averaging Eq. (23) over all particles in the disk (7,z) with
v (= vo * v). Employing the rigid-field assumption,

dA0
Aj(g) = - D(2) g (49)
we find
dZX\) eZbRon «
dz2 i Yn.(‘v Ib (o(e) - )‘ (F 2)1(1- ém rdr (50)

0

With the Bennett profile J JB » Eq. (38), (50) simplifies to

i d2x
" k25 [D() - X (£.2)] (51)
z
; with )
el R
KEg= (1 - f) 1) —2 (52)
6mna MY,
2 (1-4) 1 (53)
37,2 1,

The perturbed form of Ampere's iaw (22) is

15




d (1d 070 1 Ly 2 fdw
HF(r ar " A1) < Ip1 fd‘ Ib1 (54)

Substituting the rigid-beam and field representations (48) and (49) into
(54), multiplying by dAo/dr, and integrating over the radius, we find the
simple relation

p(e) + 1, 2Ae) . K(ez)» (55)
1 ¢ T-§,
where
X(£,5)> = fav F(v) X (£.2) (56)

For the Bennett equilibrium, the dipole magnetic-decay length T is defined
by

3R B *® 2
7 = 020 f‘ dr ofr) -————tm (57)
2 a 0 (1 + r°/a%)
For,
1
o(r) = o S (58)
we have
2
Ro a™B
. 00 O

Equations (51), (55), and (56) specify completely the generalization of the
rigid-beam model for longitudinal velocity-spread. It differs from the zero
temperature model (Ref. 7 ) by the full z-derivative in (51) and the v -
average (56).

If initial conditions are imposed at z = 0 for £ > 0 (where the pulse head
begins at £ = 0), then a Laplace transform analysis of Eqs. (51) and (55)

results in growth for the displacement <X> bounded by




| ]
{ 4o +Hig
<X> g —2%; /:190 H(QO) eg(QO’E’Z) (60a)
) - +i¢

where H(QO) depends on the initial perturbation of the pulse. The growth-
phase exponent g is expressed by

- ;0 Vol b
g i v z 1 v £ (60Db)
where w(QO) is extracted from the single-mode dispersion equation derived

below. Note that the contour of integration lies in the upper (Im Qo > 0)
half-plane.

In a single-mode approach, we assume

D, X R <X> « e‘i(kZ'wt)
v

(61a)
Transforming to the independent variables (¢,z), Eq. (20), we have
=il +
D, X, <x> = e 1 1{%/V)Z + (u/v,)e] (61b)
where Qo = - kv0 (61c)

Substituting (61) into Eqs. (51) and (55), employing the z-derivative (21c),
we arrive at the rigid-beam dispersion equation

. 1 F(v)
-iw(Q )a= > d/rdv -1 (62)
o - 4y [1-(2-kv) )
where we have trarsformed to the dimensionless units
Y
=0, sk (63a)
0 sB sB

o e .




(63b)

s Yo u (63c)
We now consider various specific forms for the distribution F(v).

We recover the cold fluid (or zero temperature) results of Reference 7 by
choosing

Fo(v) = &(v) (64)

With this distribution, (62) becomes

-iw(Qo)F 1 -1 (65)

(1-¢ )0 - &)

which agrees with the usual form of the rigid-beam dispersion relation --
with the exception of the current-neutralization factor in the denominator
which is usually set equal to zero.

For finite temperature hose, the Lorentzian distribution

FLlv) = f’ ;5*%*Z§ (66)
is particularly convenient since the integral in (62) can be performed
analytically. Any function K(v) which is analytic in the lower half-
plant (Im v < o) with peak amplitude less than |v|2 satisfies the relation

+ oo
ﬁ\) FL(\)) K(v) = K(v=-ip) (67)

Hence, (62) becomes




-

+
1

1
(1- 4,00 - (2 + ikp))

-iw(@ )X = 1 (68)

This relation is analysed in Section V where its consequences on hose
growth are discussed.

The Lorentzian tends to overestimate the effects of longitudinal velocity
spread since the mean of v2 is divergent. However, in the limit 25 0,
(68) agrees with the Maxwellian result [employing the distribution (35)]
to lowest order in ku and kA if

u= A (69)

Numerical comparisons suggest that the real part of the r.h.s. of (68)
agrees reasonably well with the Maxwellian weighted results; differences
in growth rates are small (5 40%).

19




I1V.B. Distributed-Mass Model

The distributed-mass model was introduced by Lee (Ref. 7 ) to incorporate
phase-maxing -- associated with the spread in betatron freguency kB -~

into the rigid-beam model. Justification for the wmodel relies on the agree-
ment of its predictions with the results of cxperiment and particle sinula-
tions. In this section, we generalize it to account for longitudinal velocity
spread. The procedure is essentially identical to the rigid-beam developnent

in Section IV.A.

Following Reference 7 , we associate with each subset of particles in
(v,vtdy) a mass distribution

k2
_ 4 m S
m = (a)g (70)

where 1 is a continuous variable with range 0 < 1, and km is the maximum
betatron frequency for a particular beam profile, i.e.,

= = 2
km = kB (r = 0) (71)
From (27) and (28), we find
Jp,o (0)
2 bo
km = 27 (1 - 6m) T (72)
which for the Bennett equilibrium gives
2(0 - 4 ) 1
2 m b
ko, = —_ = (73)
mB a2 IA

We let iu V(g,z) represent the displacement of a disk of particles at (¢,z)

with mass mu and velocity v = Vo + v The center of current is now given by

1 to
<«<x(€£,2)>> = ﬁu h(y) ﬁv F(v) Xu,v(g’z) (74)
0 -

20




where h(n) du denotes the fraction of disks with mass mu and is normelized
to one. Following the arguments of Ref. 7 , we choose

h{u) = 6u (1 - ) (75)
which is zero at p = 0,1 and peaks at ;, = 1/2.

Substituting (70) into (50), we get a new equation of motion for X

Hs
d?x .
~—1dz—2- = wkpg 0(2) - x  (£,2)] (76)
and Ampere's relation (55) is modified to
D <xlenz)>>
JORE S (17)

These two equations along with (74) completely specify the distributed-mass
model with Tongitudinal velocity spread.

The single-mode dispersion equation for the distributed-mass model follows
substituting (61) in Eqs. (76) and (77):

1 + o
_iw(Qo))\ =/du 6u(l - ) {IT}-JA—Y /d\) _ﬂ_LZ_ -1 } (78)
m -0

0 u=(Q,-kv)
where the dimensionless units now correspond to setting kmB = 1 rather
than ksB in (63). Note that for zero velocity-spread -- i.e., F(v) = Fc(v)
in (64) -- we recover the distributed-mass dispersion result of Lee with
the addition of the current neutralization factor b

A tractable solution of (78) for finite velocity-spread follows by
employing the Lorentzian distribution FL of (66). Since u is real and the
singular points {kvs} (from setting the denominator of the integrand equal
to zero) lie in the upper half-plane (for M1QO > 0), we simply replace




e

kv by -ik/ The integration cver p can now be performed to give

. - __‘1___‘ -
—m(oo)x “TT 6,@ Mm + G(szo + ikA)) (79)
where
ol1 2, 2 2 {1~ 5%
G(S) = 6S 5" ST+ S°(1 - S§%) un ~~»§~—) (804a)
for InS>0and 0 «Re S <1.
The branch points of G(S) lie at S = 0,41 . Since the Qo-contour o7 inte-

gration in (60) Ties in the upper half-plane, we choose branch lines that
extend to -i» in the lower half-plane. On the primary sheet for Im'S = 0,
G(S) is analytically continued into -1 < Re S < 0 and [Re S| > 1 as follows:

2 -
+im + &n 1:%—] > 0 <Re S <1 {
3 E‘
) 7 i
zn(l:§—) = { -in zn}llg—} , -1 <ReS<0 (800) :
-5 S ;
%n l::;_ . [Re S| > 1 "
5

For Im S # 0, the prescription for determining G(S) is now completely specified.

In the Vimit 0 -~ 0, and 11 > 0 (or 1), the Lorentzian distribution in (78)
reproduces the Maxwellian result [employing the FM distribution in (35)] to

Jowest order if ;

= <vls (81)

>
24
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Generally, however, the Lorentzian result (79) by equating A with u tends
to overestimate the effects of longitudinal velocity-spread -- but by less
than 40%. This is more than adequate for our present purposes.

The dispersion equation for the distributed-mass model with finite velocity-
spread is now completely specified. Its implications on hose growth are

explored in the following section.
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V. ANALYSIS OF DISPERSION RELATIG!HS
V.A. Rigid-Beam
Growth in the beam displacement <X- as a function of (7,7} is weasured by

the leading amplitude (60). The growth-phase exponent ¢ for the rigid-boen

model follows from (68); with kSBz > 2 end ksB{ > £, wWe have

g(a ) =-i,2 - iuRB(Qb)k " (825)

0 ¢}
(QO + ﬂ<.f,~)2

w0 IA =
BT - (g, ¢ ikn?

where we have set 6m = (0 for convenience. For the case ks = 0, Figure 1

o,

———

L i LA T o -

gives the Im wpp ~ 0 contuur in complex G -space; the shaded vegion corresponds

to Im w,, >0 -- i.e., where hosc growth occurs -- and the broken-line marks

: RB
& the inversion Qo-contour of integration for Equation (60). The g%-contour

?’ is not permitted to lie entirely in the lower half-plane since there are

intrinsic singularities at Qo = +1, Since Im QO and/or Im “op must be greater
thun zero over some part of the Qo-contour, unstable hoce-growth results. ‘

For kA > 0, the real axis (Im f, = 0 in Figure 1) shifts up by an amount k/.

For kp > .3536, the unstable region lies entivrely in the lower haif-plane.
Thus, the Qo—contour can be taken along the real axis, and hose stability is 3
established. However, the rms-velocity spread u must satisfy the condition

Y ku > .36 (ksBVo) (83) ]

which is unrealistic in practice.

’ For a general understanding of hose growth, we pass the % inversion ccntour
through a saddle point. The saddle point Qs satisfies the condition

2(
B ) -0 =-iz+ s
2%

+ ika)

2
]

>

)2

0s 1- (QOS + ik
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For z)x >> ¢ and |1-g%| << 1, we find

', 1.

1( £ 1 .
Sbsf’l_'?bf\ + 3 ?lﬂfl - ik4 (85)
L 1,
9(9p,) == iz + i|*7|" - 2kie|PE] (56)

The damping of hose growth due to longitudinal velocity spread is now explicit
in the -zka term of (86).

! If we maximize g with respect to z with & fixed, we find

a9\ - =
( = )g 0 , Ry = 0 (873)
f LB .
I Smax ° * 4k A (87b)

This maximum occurs at

>0
z = ; (87¢)
0 4Ak2A?

Thus, for A > 0, we have unlimited growth for all ¢ as a function of z --
i.e., an absolute instability -- which concurs with the rigid-beam result
of Reference 7.

For finite velocity spread, the hose displacement amplitude peaks at each
g-disk with maximum exponent Inax and then begins to damp. The maximum dis-

placement occurs at larger z_ with increasing ¢ according to (87c). Thus,

)
the hose displacement convects back into the pulse (towards larger ¢) as it ‘
grows in ampiitude. It is straight-forward to verify that the convection

velocity is given by

~ ankZ A2 (88)

o™

If we allow a maximum displacement gain of 103, for example, the maximum

pulse length Lmax permitted for hose stable propagation is ‘
P i




max
Lp " = 28 A ka (89)

according to (87b). If we cunsider a proton beam with

E - mc2 = 50 MeV

—
[l

b = 10 ka (90a)

.5 ¢cm

=1]
n

we find .1 < A < 1 and kS = .051. Condition (89) then becomes

B

max

L™ % (5.5 meters) ku _

= (%b)
ksBVo
Thus, longitudinal velocity spread alone does not ensure useful hose-stable

pulses without imposing severe conditions on the rms velocity-spread.

For 6m > 0, the growth-phase exponent (82) aquires an additional growth
component

'1_:"‘3;% (o1)

which increases the maximum displacement at £. Since we are interested in
the relative importance of longitudinal velocity-spread on the hose mode, we
ignore this plasma return-current effect in the present treatment. Note
again that when the denominator in (91) becomes less than .5, the present
model begins to loose its validity. For significant current-neutralization,
we must take into account the proper radial-profile of conductivity and

its dipole perturbation. ‘
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V.B. Distributed-Mass Model

The growth-phase exponent for the distributed-mass modcl is given by (79)
with kmBZ -»z and kmB£f> I

= -iq 2 ik &
9la,) = -Tgyz + Glo, + ika) - (92)

with G defined by (80) and b = 0. For ka = 0, the inversion Qo—contour for
(60a) is plotted in Figure 2. The shaded region corresponds to Re G > 0 or
unstable hose growth. The branch cuts are designated by dark, wavy lines
extending to -ie. Since the inversion Qb-con%our must lie above the branch
points Qo = +1,0, it can not be deformed to lic outside the region where
either Im Q, > 0 or Re G > 0. Therefore, hose instability cannot be avoided.

For finite velocity-spread, the branch points and the Re G > 0 shaded region
shift down by an amount -ikA This effect is illustrated in Figure 3 where

Re G is plotted as a functior - Re Q, for various values of ka (with Im 0 = 0).
With kA > .183, the unstable region lies entirely in the lower half-plane and
the Qo-contour can be taken along the real axis. Thus, we achieve absolute

hose stability with an rms velocity-spread u satisfying

ku > .183 (k (93)

mBVo)
which is nearly a factor of two less than rigid-beam condition (83) with no
kB-mixing.

We perform a saddle-point analysis on (92) to extract additional information
about the hose instability. The saddle point Qs satisfies the condition

29) = (94)
().

The values of Qs have been computed numerically (assuming Im Qs = 0) and
are plotted in Figure 4 (solid-line) as a function of kA. Values of the

maximum growth-exponent Re G(QOS) have also been determined. For these
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values of Qos and kA, we compute the saddle peint condition

S e R (95)
3(Im G)

c
Gike 50))

{0
0s

which represents the rate at which the peak wave-packet conveols back towards
larger £. Values of vC/A are also plotted in Figure 4 (dashed-Tine) in {leri
Of k i

For a given k&, we can compute the upper bound on hose growth for a particuler
¢-disk by :
¢

x(e)s < ¢ el s 5 (96)

When the maximum is achieved, the displacement amplitude coumences tou danp.
By expression (95), we see thet the hosc growth saturatles at larger 7 for
increasing &£. If we allow a maximum gain of 103, the pulse length is limited
by

max _ __ IA

S P () (97)
0S

1 |

in units of kmB .

For a proton beam with parameters (90a), we have for kA= .05, for example,
kmB >~ ,088 and

ma
LX

" < 2.0 meters [for ku = .05 (k v )] (98)

mB o

which is ~7.3 times longer than that allowed by the rigid-beam model (90b)

with no kB-mixing. For kA = .1, we find

ma
LX

D < 3.6 meters [for ku = .1 (kvao)] (99)
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To appreciate the effects of longitudinal velocity-spread alone, we compare
(98) and (99) to the cold-fluid result (ks = 0):

max

L
p

< 1.2 meters [ku = 0] (100)

which is a factor of three less than the hose-stable pulse with ku = .1 (kvaO).

Note that (98) - (100) are approximate upper-bounds on hose-stable pulse
Tength. Inserting the proper units back into (97) and employing the Gennett
results (59) and (73), we find Lgax is proportional to beam curvent. A
decrease in beam current due to ]ongitudinaf pulse-spreading would reduce
the hose-stable pulse length.
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4
VI. CONCLUSTON
t
In Section V, the distributed-nass model with longitudinal velocity-spreac
; provides approrimate conditions for hose-stahle piopagation. t is uceful
to compare these results with realistic coliective-accelerator projections
' and with the requirements for longitudinal mass stability.
At the exit-pert of the Auto-Resonant Acceleralor  (FRA), the maximun sprodcd
in energy is estimated to be
1/2
max n
L/;‘r_)__.__ ~ 2 , - 3 _8 \
. E = 6.3 Yo \0(1 BO) m (101)
! 0
where m is the eleciron mass and m is the ion mass (Ref. 10 ). This result
is due predominantly to longitudinal velocity-spread with ion axial-motica
confined by the cyclotron wave potential. For the 50 MeV proton brar. (3ia),
the ARA would produce
max
(“E%__— ~ .04 (107)
)
The associated rms velocity-spread, according to relation (42), is so.wi:c
in the range
f dc L2 (10%)
VERVIRY
0
' Comparing this to predictions (98) and (99), with k =~ .5 kmB’ we would expoct
| a significant increase in hose-stable pulse-length due to longitudiral
d velocity-spread at the exit-port.
»
After the beam propagates a distance, some of the longitudinal temperature
is converted into transverse temperature by the azimuthal magnetic self-
field of the beam. A lower-bound on longitudinal temperature may be found
» in the dynamics of the longitudinal mass (or bunching) instability. Sloan
“ ) 33 |
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RS - vhe |

et. al. (Ref. 6 ) have shown that the longitudinagl bunching inztobility in

the axi-symmetric monopole wode 15 lLandau damped when

u 2 b
YA ];' (104)
Voo Yoo M

In fact, this condition is cuforced by !fhe instability itsclf: as the
bunching mode grows in cenlitude, the vos velocity-spread incircascs uatil

(104) is satisfied. TFor the 50 MeV proton bean example. wz find

(-‘f—) 075 : (105}

which is reasonably close to the Tcwer Lound estinate (103) procduced at
the exit-port of an ARA.  Thus, ihe bunching instability apprors to maints in

the longitudinal tenperature required for inmproved hosc-stability.

ko concivde frow these preliminary vesults thet the lcw-y light-ion beani iwuy
hiave an advantage over a comparable clectron beam insofer as the resistive
hose instability is concerncd. The degree of advantare (i1 any) depends, cf
course, on the amount of velocity-spread the pulse can tolerale -- spreading
of the puise length would reduce its curreni and decrecaze its hose-stable
length. It has been suggested that a "self-trapped mode" may ¢xist where
the beam particles are confined longitudinally by the self-induced electric
fields at the front and rear of the pulse (Ref. 5). Verificaticn of this
self-trapped state will require a numerical study of the dynamic coupling of
Tongitudinal and transverse degrees of freedom [e.qg., & modified LOGAP code
(Refs. 1 and 2)].

A more precise quantitative estimate of this hose advantage would also

require a comprehensive numerical study cof hose dynamics: a self-consistent
mode] with a realistic o-channel and with the transverse and longitudinal
deqrees of frecedom properly coupled. The latter requirement would permit

some of the longitudinal temperature to be converted tc the transverse plane
by the magnetic self-field. This would result in a new isothermal equilibrium
state with a modified beam-current radial-profile.
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APPENDIN A GEMDAND T RGDhN ALGORITHIS

(Lxeorpts From Scotion 2.1 of 2ol 1

In the remeinder ol this section, veo docioe e
governine cauations for Jow-y  propucaiion aoad Cicove s the
nuncrical nothods ol rolucion.  The new gonoratirod 2000
algorithm, GIM, which ooives oxial-oyioacorio, Moo
causiions in read time, oo peoood conoidrroh e Loaiing.
Some recults are proaoniogd, The lengitudingd dicporada
algorithm, LNGLIP, 1s <li1ll urider dovelop:nent ond onljoo
to revision.  The rodial envelopa alpgoriilin is ooty «ibi

modiiicd froem the version contained in ICAP,

The low-vy propogoticn code, LOGAD, is intend
to modoel concurrently the root-mean-oqguare {(yrme) racdin)

POrPAR.

envelove and Lhe Jlongitudinel charge distribution of o

single-pulse in real time. To make the problem tractable,

il

ve impose several simpl” " cing assumnptions.  Tirvst, we dgnora

the cowplicotions «f dipole hose inatability, and hicher
order instabilitics, by assuming axial synmotre.  Second,

we imposc a modified-Bennett radial nrofile on the beoam

current density.,  This reduces a many-dinmcensional problen

to one involving cnly the rms-radiuve and its tinme derivaitive.

Third, we treat the radiel and longitudinal degroes of
» > t8Y

[RESS

freedonm separately.

W? consider a single-pulse of icons moving in
the positive z direction. At time 1=0, the mean velocitly
;z(t=0) is assumed to be known. At some time {20, vo focus
our attention on some thin slice of beam cut normal to the
direction ; and moving with some mean velocity ; (z,1).
Clearly, at constant t, if ;7 varies with gz, theﬁ beam
particles will move into neiéhboring slices, resulting

in a shift in ;z and charge density.

Al

it oidc Lons sy 2, , . St miiosmaiidecl i i e

R

A




e

For « fluid description, the Fulerian time derivative

1

Ve nonitoer tho wiorntdog of poritieloss mmen .-
iea2ly by dnoroduacing the cocrdinete trnng Tornarion

L= By et (A1)

E T p ctl-u

’ ¢

vhove ¢ is 1the opceed of lipght ond ﬁbc o oin ity i e y
meen puloe veloceivy at t=0.  The coordinniae ©odo Lhe oo o {
tion of our noew reference frome in voite of longtly, ond b

displacoment variable ¢ denoloes o particuln treno,

-

slice of space measurcd froein the origin of the r-1ror
the nepative @ direction. The erigin =0 1o chonen 1o
correspend to ihe frontefl the pusle ot y=1-=0. hoto thod

(A.1) is a Galilean transformation - we are 131 in the

laborntory frome of referoenco,

o tronsform our governing countions of motao.

with the following roeplocomente:

e

ol
a'w
o' v

(4.2

~

v

SN

transformation is ;

d o -
ac BoC 3% + (BOC - v,)

lo:

(A.3)

(B}
Faal

where vy(g,c) represents the mean v, in the slice of beam
at (£,7).

A




The radiel beam cuvwront donoity, T

~ A

oand the e evrronn
density in the w-dircction, be, cre gsnuned 1o be hnownn
as functions of (r,5,r). Tue gou(nuLirjty ¢ is ooneroiod
as ooruncticn of (v, 8,5) from the vadlees of 100 7 ool J)
For our perticulaer soplicuiicn, we ura the aiopts cicd oo

induced wir conductivity nodel BGGID (Lot gy

Because of the sensitive dooondopee of 1l

ficlds on condactivity, it 1s nccessory to firat provid
formal sclutions to g, A4, Ve intenrate clong the
Ycharacteristic lince™,
i (1-8_)
R C._ r + F ( . A .5
(e}
(D) ) ) A5
L) = F —— 2o (1= + r . Ob
B “ (- Tp) + £L(1) (A.5D)
o i
|
t
5
i

Ec(@) = (&= To) + L () (A.5¢)

where ]
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; Aflcer jrposing nxiald-svioectey wnd Lhe coordinsbe
tronsformations (A1) with {(A.2), Masvelld's cqguuiion:s

becomoe:

F S .E.1~-_[?f.")_ L. (L' + 1, ) L DA _?O_g IRE T i]”i 0
o O A S L P

(1-8 ) . % G J,
[;F+ ""r() $¢] (?t,‘}%)+fﬂ- LoB 4 S B P
"o oL 0 ro=z e 2 o)

where we have introduccd the unit conversicon

AN

EY = ._Z_
z - 7
o
: Z = free=space impedance

= 376.74 (ohms)

A3




e

Generally, if

D— Ty () PO = 6(r) (A7)
“h

thon

|4 T L .

i/r g(r'hag! J[ g(g')ag’ gCg' Hdr
L L r

F(r) = F(gy) e b re B G(g) e ag

CA
(A.7D)

Hence, 1hoe exponential dependence of the ficelds on conduc-

tivity is made explicit.
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e

~

e refer  to the liven (A.5) oo eharnctoricuics.
In Figurc A.1 |, we 1dlustraeie our differencing prid ana the
choractevistic lines of integration. i owe kiow the values
of the ficlds at Cl for all (&,x), then Lhe valuos at
CZ 2 Z:l-'.- AT arc found by inteurating uvmward a2loae the
charasctevistics.  The relevent differcnce cynntions emeror
directly fron (A4), using the formael wsolution (A7), and
arc expressoed in terms of the two variaobles (I,r). The
meihod of solution is now cssentially identical to that
of CATHY in Nedf. 3. The field values are updataed

explicitly in ¢ and implicitly in the radizl dimciszion.

Our trcatment of the (B) and (C) characteristics
has two phascs (sco Fipgure A.1). First, at the start,
when the ficld profiles are evolving rapidly, the T-steps

arc small and the characteristic lines extend all the way

down to the Cl—linc. After the fields have come to sonc
quasi-cquilibrium state, we may incrcase AZ by commencing

our (B) and (C) integrations at the previous & =licc.

In other words, E;B, IIB and E§: are interpolated betvween

¢

the o0ld and new values at EI-l'

The conductivity 02(1—1,J) in Figure A.l is
updated according to BMCOND (Ref. 3). Ve modify its
incorporation into GEM, however, by integrating along the

proper characteristic,Eq. A.5c, rather than along the line

" of constant r (the "frozen' approximation).

To complete our description of GEM, we providce
a prescription for the source terms Jb?(r,E,c) and Jbr(r,g,c).
The radial dependcence of bolh are presumed to be known.

A6
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Lt ST

For Jh-"

radinld profile gmiven by

ve Jmpose the moedl Jioa-Lonnel

» 4 V7
- (1 - /R C )
N N Moo . S N e
LTL)Z.(l)E-yIJ) .4 I ({_,;Z,) \:{,'(&,C/ ,/: ? ? (,;,,.h)

1rlt"B (L + /J';';:) )
vhere the radindl cutoff ds nei by the relacion
RC = CHP.B ‘ (A.8h)
The Boanceit radius }‘.B saticiics, by dolinition, the reloiion
RBECBR (A.Be)

with the raes-radius R defined by

r? (h.80)

R

Once the cutoff coefficient CR is chosen (msuality ccoeording
to the size and resolution of the rodial mooh), the Beanctt
cocf{ficient CB follows dirvectly from Fg. &A.8c¢ and A.Gd

The normalization coefficient K is set by ibhe condition

Ro

2 —
g = A,
f Jpy AT = N (£,0) V_(£,2) (A.9)
o)
and is depcndent only on CR' The beam charge per unit length
of pulse, N ., is related to the beam current Ib by

I,(8,%)
N(g,g) = ——— (A.10)
v,(£,2)




. W

and to the beam cherge density pb.by
N(E,p) =j pp(x,,T) atix™) (A.11)
0

Thus, Jbz is completcly specified Ly R, N, and ;z'

The radinl beam current Jhr is agsumed Lo have

the form similar to Ig. A 8a

K _ (1-r2/néz)2
Jbr(r,g;C) - _;2-2 N (E;C) Vr(r,{,,f,) "(_1";':72"':7);“2 (A .12:',)
LRSI X /HB )
wvhere we have assumed
R(E,T) (A.12L)

Vr (r:g9l:) = T ﬁ—(—&;C)

. )
The dot in R denotes the total Lulerian time derivative

of the rms-radius:

=
!
]

(A.13)

The relation (A.12b) is a direct consequence of the

self-similar expansion ansatz employcd in the derivation

- of the rms-radial envelope equation (Ref. 3.

A9
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The clectronnsnetio fdlelds in G owre comploooty

specificed os functicns ot (£,0) Ly providin: B, i, N and

v, Poth I end R cre zmolwiions of the roadiasl cnvolane

T

cquaticn of mollon dorived by Lo and Coopeoy (Heflo 4).

Vith glicsht rodificotion, our adantation for LOGLY 19
() 3 -

r

identical to the HIGAP formatlinn diccussed in Ref. 3.

Ve neced conly to replace the totad) time derivatives by the
transfoim (A.3). The rosuliing cquations diffor froa those
in HIGADP Ly the roqujroﬁvnt that we inteprate along tho
new characteristic -

£y (D) = =Sl (Leyy) + ey -1

3

and that the betatroan froguency ¢ (Eq. 3.5, Ref. O be
replaced by
2 _ e (B‘ZOHQ:ng

2 oo (BN (A.15)
ﬁ ‘\hl r

Z . s .
where B =% , mis the beam particle magss, and e is the
elcctronic charge. The envelope equations are solved

simultancously using 4th order Runge-Rutta.




S itn g

Ve rmuct now derive oosel of voornad g
for the moeon churo por wnat oo ch I0oond e oo vee Ty
v . Adopting o £3vid desordiptica, ve o datveocues b
< o ‘-
- - CO 3

distribution fmaclion § whoere ¢ IR 1) ¢ ¢ an
13

defined to be the nnm;or of beon perticles with

4

in the phaase volurno drl d» dp.  The cingle pariiclo

moventun P odis reloied to the <insle partidcs > veieotly v
p = yuv (A 206)

Becauso we normalive £ to the totul pumber of beam poarticlen

in the single pulse, we have

hY

- 3
B (r;, z, t) = f dp (A 170)

and for the charge and current densities,
Pb(?i, z, t) = en (A.17D)

— 3
e v T dp (A.17¢)

Jb(ri, 7z, t)

We define the beam-charge line density by
N(z,1) = [p, of, (A.18)




I Q repreenents corme variable of intorest,

OF

it is conventone to introduce the notation <0> and

1 3
<Q> = 3 Q I dp (A.)an)

and the radinl averare

~ = 1 2
Q - I\r Q pb er (1\.19‘:'))

In the development to follow, we ascume thot

vhore

e
o
~—

Q= < “ (.

The governing cquations of motion can be

derived by starting with the Torenty invariant, collisionless

Boltzinann equation:

-—
—_

{)._. g —;0 =3 C
TR 0 (A.21)

o),
P
e

where the Lorentz force T is just

— —

F=¢c¢cli + evx B (A.22)
Since we arce interested in various momentum moments of A.21,

we let Q(p) represent some function of p.  After multiplying
. 3
(A.21) by Q and integrating over fdp , we have

—g-z-n<Q>+V-n<Q-\7> -n<i’-’<7‘p>Q =0 (A4.23)




wvhere we have used

-—4 - A

V « F = 0

p
‘e now multiply g. AL20 by the clectrosintic choren e

2 )
and perform the radial integration .fch‘l to Tind
* =

d N a R LT o
= N Q> 4+ = N <O v > - N<IeV _Or o= L0
PR (‘2 S v s.\Z 4 l:)x (/

We have impeosed axial-aymmotry ard the cocudition

Lim 1-3 Py, = o] (A.25)

Ir-re

Finally, by performing the coordinate transiornaiion

{(A.2), we bave

- .- <Qv, S
3 = s [ z ] N
- < + S NI<Q> - ——- = e O > AL.2G
3 N Q> 5F N B¢ S <F-V_Q (A2
> O O
. To obtain a closed sct of equations from

Eq. A.26, we proceed as follows. First, we substitutle
thice relations for Q:

Q=1, p,, and ¥ (A.27)

where p, = ymv,. For our particular applicaticn, we
treat v, as a functional of (Y'Vl) and Taylor expand the
<"> terms about the mean gamma Y, where

Y= vy 46y (A.282)

and

===y

<Y

]
o

(A.28b)

ol et suliints
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Ve keep teras enly up to cocond ood oo In

digpervion &y and ignovce the disreirion

velocity.,  Foroaiuoenle,

V. Y >
2 A
-
e YU
~ O 2 o PR
= VZ - 0 P 0 J
vhere

~ o
~ ' 2 9 (44
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<
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~
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Yinally, we wswsunme yoro radisl corrolotions boetweon v

and the ¢leeiric ficeld £, i.e.
v, )

= <> <>

N
(5.50

(A.3T)

(A.33)

This is nccessary to cenpleticthe separotien between the

transvevrase and longitudinal mode.  The

velocity is assumcd to be

v T _R
1 R

n

(A.34)

in keeping with the self-similar ansatz of the radial

envelope equation.

Al4




Ve ayrive atl e

3
I Z‘»f'_i B(Ji
i d_.r_h. + _,;\(7,'; == h,L , 1 - (1,2,3) (\ o
Cd
with
v
e = I T R -t <
.11 X » ql ( [)UC ( %

——- — T
- T o o A X ESENA ‘ 3 . ?l :;' b
1‘2 = N Vv, . q2 = h\sz v, (3 c)

Tg = N Y » Qg E Ny - vy (A.350)
hl =0
N mee o
h, = —~— {<e b > + <ev B> (A.38) y
2 r’Y ,
mB c . 3
o -
Y - N — =i as rss e e 3
hg = ——— v, <el_> +<eb v > (A.351) :
mg_c & 2 .
O 7,
where :
v = Y v. + 6%k (A .36)
] A Z
N
! 2 - - "2 2 A
Yyv, = Y v, - ] v, K A .37)
The source terms (A .35e, A.35f) are generated in GEM using
: Al5 i
H §




The fivet cquetion (L85, d01) 1 Just (he continuips coor ) o

For concervation of chorge. i
. v descvibed in the sceond ceguation, and cenoeny Tlow dn Lo

third,
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and (o nwaerical moethoads of solution aroe Greeril o in
Roelorenco 1 (see Appenltix A). Thoere we ivpose (oo Galiltean

transforotion

Y
'
h

£ ¢t

@]

™
It

ﬂ()('t"‘z . (]1.1)

r = T

where ¢ meosures the distance traveloed by our choson

refoerence frame and the displeconent variable, &, denotcs
a particular transverse slice of svace neasured rorm the

origin of the moving Trame in the negative z dirvectlion.

The Boc frame velocity is initiolized to eguul the mean
vz—ve]ocity ol the beam »nerticles at t+0. Note that thoese
coordinates are still in the laboratory frame of refercence.
The resulting differcence cquations follow directly from
Egs. (A.4) of Avp. A after imposing the formal solution
(A.7). The "charactleristic lines”™ and the interpolation

scheme are also desceribed in Appendix A.
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Ve arrive st sot o of threo conetiopes podogin:
to the field values I‘I_r, ]-’.‘x, and H(;) ol Lhoe oo poing
(51,1'(),11]‘)37(1,J,J:) to the ficeld volues ot (1-1,7,1),
(1-1,0+3,L), (Y+1,0,L-1), (1,d,L.-1), (I-1.0,1-1),

U1, 000, 0=0) . (1,040, 1-1) and (I-1,3+1 0.1 ohoiol o

)
predetormined. The pumerics] stability ol our e dee e

diftoronee sercme can be oxmained by Lrensiorr o chio v
of cquations dinto o disporsion reldation, o)

the fregueiney of o Fouricer mode on t(ho nesh o Vi eabos

VAVEe nWwnbers:

. =z k Ik
[O) (SSQ ( {;) \1.)
This is achicved by replacing the Ticld verciebles Ly thojr

single mode Youvrier transform, i.e.,

3 P> - > — , y
. Cl[wg LAZ ke Tag kJar]

Since we are interested in numerical instabilitioa, we
sct all {he bomw current source terne: to vero, Ve alao
assume, as wo do in GEM, that conductivily romuaing constani

over the choructevistic lines of a sipgle wesh dnterval.

end resvlt is a lincar, homogoencous scol
~ A~ A
of ecquations {o. the field amplitudes }37, Er’ and ]1(’,‘.

The coefficients of these field amplitudes form a three

dimensional matrix M. 1f the columns of M correspond to

ﬁr’ fi , and ﬁz’ respectively, then

¢




] ) =: Q-A - +C R
} ]\L 1 8 3( 1 (A) +( .‘\,) )

= A ¢ - e ~( ‘:
,](LZ ( | \//\.) (A. )

Moo= -2 4 sin (5/2) Ay( 2 -(1-C,)=C0)

13
[ My, = @SBy (1)) Q@+ C/T
Mo, = =By (0 =(1-Cp) 9/ = /1) (13.2)
| Moy = 2 3 sin (X/2) By( @ +(1-Cp) 9/k + €,/ 1)
Mgy = 0
Mgy = 4 € sin (3/2) (0 (~1-(1-C) /K)=C/X)

Moq = Q (1-C3(J,—CC)/}&)»C3 CC/P\
3
2 where

= exp(i %Ac)

K = exp(i 1;€Ag)

A = krAI‘

B3

i




and

with

-

it

(1—A3)/(6 re/ig)
Ay BT /(28 OT)

exp (- ¢ Ac/?o)

(]-"BB)/(O A\CB/BO)
By AQB/(ZBO LY)

exp (-0 brp/Ry)

(1-C4) / (5br)

-0 AL
*C
— )

exp (

B4 i




and

vhoere we doefline
- -]
c  Z 0 (e 7))

conductivity (mho cm“l)

<
1

N
1

\ —=~ = 37G.7 ohms
O

The doeterminont of M must be zeoro for 4 nontrivial solutior.

Thus, we arrive at our dispersion relation, i.o.,

~—

Aa‘l‘




The daspovaron volation Goriveoed Pror e o
maltriy 1« noth e o then 0 et e canss Lion For
1L Al
,»
9 T .
Boeonuwse of dis comnlexity, vo o ploy ooneeienl »oot .-
finding wlcovithe o solve far

| @ |

, in terns of k., k., Ar, AL, LI, o and {Z(). Yoo explore
¢

P

the following vyariab’e values:

Ar = .01 (cm)

AL = .2 (cm)

kao o= "ya, Te, 3, w

k or o o= T7a, /2, STa
o =107 107% 1077, 1077, 1077, 1071, 1 (U0
B, = -5, .7, .8, .9, .99, .90D

The time step 47 is dincreascd untiil the stubilitly ceriterisa

| o] <1+ 1. %100

is violated. (The root finding algorithm permits a con-

-6
vergence error of 10

.) Our particular choice for Ar
and Af is set by the dimcensional requirements of our pulse
profile. Note that we restrict the range of krAr and thg

above, rather than go fron 0 to 2w. This is sufficicent since

the remaining range would give the complex conjugate equation
%
where |Q |=|0].
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i Proesient e vostdis Gl o soreel
l Pigare Bt by plotvip the yotio o Lr o/l an o ieetion
af ;l( Foro variouws ve e of conductavitey. Ve Tiro
. )
Oloootyve thot the sosdnar: o1 bovanle O [ crad e S
e
gororation wedsties opy rexinolooy the folltauing vor o
‘ lt o
Y Q) ,
e N (1.0
LE ¢
f Ve recormnize thic Lo bo npothiing move "than the alaope ol
. the foveerd coing A" chereocteristic of Dg. (A.Ha) in
!
‘ App.o A Thus, vwe concionde that @XM ds unceondisjoned i

£

stable =0 long os tre YAY charvacteristic does nat

bevond the nearcst-neighbor mesh point in €.

Second, woe nofe that [x:ry’v i effocti
insenaitive to ovr choice of conduciivity coxncoepl b

il

o = l(rho/em). This is to be cexpeetled cince Fjelas
propagate poorly in a highly conducting modiun, ]

points arcound o = 1 (mho/en).

And finally, we observe that as BO ap
one, Acn'qx becormes inlinite.  Thus, in the high-vy
Jed S
we achiceve the cssenticl ceriteria for the high-y

mation in CATHY.
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vords, nuniccical errors begin to dangp out bhoetlveen mesh
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